This chapter focuses on the design process of voice services based on VoiceXML language. Basic design principles will be discussed to improve usability and perceived quality of the service. Then a short introduction into the writing of VoiceXML applications and speech grammars according W3C SRGS and SISR recommendations will be offered. At the end of the chapter an example of VoiceXML application with its source code will be described.
[bookmark: _Toc417996070][bookmark: _Toc418186459]Basic principles
The very important question is “What does it mean to design voice service?” We can define that it means to design:
· dialogue structure and flow (call flow)
· system prompts (questions) and expected user responses
· speech grammars, which delimit allowable user’s utterances
· and access to the information databases and other resources
Each item from listened steps has its own rules that can be considered during the development process.
[bookmark: _Toc417996071][bookmark: _Toc418186460]Dialogue structure and flow
Dialogue structure and dialogue flow is determined mostly by the information that have to be acquired through the dialog and by the information structure, which will be provided to the user.
The first step in the design process should be an analysis of the user scenarios and the task, which should be completed by dialogue interaction. The client, who plans to provide designed voice service, should formulate the main goal of desired service. Then, values, which need to be obtained from the user in dialogue interaction, should be identified together with the type of presented information. Dialogue should be constructed in such a way, to be able to collect all required values necessary for the task completition.
In this stage, several decisions have to be made. Such decisions relate to the dialog strategy, error recovering or selecting of the confirmation strategy.
Dialogue strategies
There are three different dialogue strategies:
· Strategy with the initiative on the side of the system (system-initiative dialog)
· Strategy with the initiative on the side of the user (user-initiative dialog)
· Strategy with the mixed initiative (mixed initiative dialog)
System-initiative dialog can be characterized as an interaction, where system asks questions and user answers them. Such dialogue strategy usually leads to the successful task completion without increased cognitive load of the user, but it often makes the dialogue too long and tiresome. It can be considered as the most primitive interaction pattern, which has the lowest requirements on the modules as are ASR, TTS, NLU and leads to the good reliability of the service. System-initiative dialogue interaction can looks like interaction in the next example: System: Welcome to the Weather forecast service.
S: For what city do you want to obtain Weather forecast?
User: Košice
S: For what day?
U: Friday
S: Did you select city Košice and day Friday?
U: Yes
S: …

The opposite scenario is performed in case of the dialog with the initiative on the side of the user. In this case, user asks questions and system answers them (see example dialog below). Such interaction scenario places high demands on the system’s components, mainly ASR and NLU units, because of the high variability of possible user’s utterances. This is also the reason, why dialogues with user’s initiative are less successful in real-life applications. System: Welcome to the Weather forecast service.
U: Hello, I would like to hear Weather forecast for Caracas.
S: Ok
U: for Friday.
S: Forecast for Caracas and Friday.
U: Yes, right.

Mixed-initiative dialogues best models the human-human dialogues. Here, dialog initiative is moved from one participant to another according the interaction needs. VoiceXML language supports mixed-initiative dialogues in a specific, limited version, which puts also limited requirements on the voice platform modules. VoiceXML’s mixed initiative strategy enables the system to ask the user so called “How may I help you?” question, which can be answered by the user in more natural utterance. User can summarize in his answer all information that is required for task completion. If some values are missing, the system takes the initiative and asks the user to collect missing information. Such mixed-initiative dialog can looks like following one:
System: Welcome to the Weather forecast service.
S: How may I help you?
U: Hello, I need Weather forecast for Caracas, Friday.
S: For Caracas, Friday?
U: Yes

VoiceXML language enables to create only system-initiative dialogues and limited version of the mixed-initiative dialogues as was mentioned above. Although, it is important at the beginning of voice service designing to decide about initiative in the dialog, because, it relates with the platform possibilities and with the prompts and grammars designing.
Error recovery strategies
The next issue is the error recovery strategies. Error recovery process can use several strategies. In case of VoiceXML language, the situation is simpler and errors, which can occure, are reduced into following categories:
· Nomatch error (event) – represent situations, where user provide input utterance, which does not match to the active grammar in particular dialog stage.
· Noinput – represent situations, where user does not provide any input within the specified time interval.
· Wrong recognition without nomatch event occurring – respresents situation, when user’s input was recognized incorrectly, but it matches the active grammar and also the confidence level was high.
· Other system errors – represents any other system’s errors, that can occure during the interaction.
Nomatch and noinput are the standard events defined in VoiceXML language and it provides handling mechanisms to recover from mentioned errors. There is also a more general way of catching errors using <catch> element.
In case of nomatch and noinput events or errors, one of the simplest recovery strategies is replaying of the last system prompt, which repeatly prompts the user to provide the input (<repeat> element can be used). Better solution could use strategy with several layers, whith following steps [27]:
1. Tell the user what happened (e.g.”Sorry, I didn’t catch that.”).
2. Then, tell the user what to do (e.g. “Please repeat your answer”).
3. Give the user more information on what to do next. (Provide an example of the expected answer, e.g. “Please say a city and state, for example: L.A. and California.”)
4. If needed, tell the user about the help items (e.g. “Please say –help- for more help about allowed inputs.”).
The more difficult situation can occur in case of wrong recognition of the user input, but without catching this event by the system. In this case, the user has to initiate the error recovery process, which can bring a difficult situation for the system. For such situations, user should be navigated to say one of the universal navigation commands, which help him to return back to the wrong recognized item and repair it. Typical universal navigation commands are [27]: repeat, cancel, back, backup, quit, help, and exit. Support of such commands is platform dependent, but VoiceXML defines <help> and <exit> elements, which requires a default platform grammar with corresponding commands to be active during whole interaction.
Input confirmation
Confirmation is another important capability, which is required in dialogue interaction. As in human-human dialogues, also in case of human-machine dialog, there can occur situations, when obtained information needs to be confirmed, because there is some level of uncertainty. Confirmation strategies can be divided into implicit and explicit methods.
Implicit confirmation strategy (see next example) incorporates confirmation act directly into the next system prompt, which has also other communication function. This method saves the duration of the dialog and can be perceived as more natural, but the risk of error is higher, because speech grammars able to catch such utterances are significantly more complex. System: For what city do you want to obtain Weather forecast?
User: Košice
S: For what day do you want to know forecast in Košice?
a) U: No Košice, Vienna.
b) S: For Friday.

On the other side, explicit confirmation strategy offers more reliable way of confirmation, where confirmation is done by a new system prompt with no other communication function (example below). It has significantly lower requirements on speech grammars, but it enlarges the dialog and can be perceived as tiresome. System: For what city do you want to obtain Weather forecast?
User: For Košice.
S: Did you select Košice?
U: Yes
S: For what day?
U: Friday
S: Did you select Friday?
U: Yes
		

Conditional confirmation is an approach, which can help to reduce drawbacks of the explicit confirmation strategy. This method involves the confidence score of the recognized user’s utterances to decide about the need of confirmation. If that score exceeds the determined threshold (usually higher than 90%), such utterance can be evaluated as enough reliable, and the confirmation cannot be performed.
Further improvement can be obtained by joining the confirmation of several input items into the one explicit confirmation prompt. Instead of asking the user for confirmation after acquisition of each input value, confirmation can be done after collecting several items.
Input and output properties
There are also some other decisions in initial design of dialogue flow and structure, which should be done. One need to decide about the type of the system output, which can have a form of synthesized speech or prerecorded audio files. Whereas using of TTS offers more flexibility, the output quality of artificial speech is still not perfect. On the other side, prerecorded speech can provides a studio quality with nice voice, it lacks for flexibility. For some languages, using of audio recordings is only one possible way.
If we look at inputs, not all input information can be delivered to the system by voice. In case of PIN codes or other identification or personal information, another input type has to be selected. Using of DTMF (Dual-Tone Multi-Frequency) tones or other input modality (virtual keyboard) should be considered as more safety. DTMF tones that relates to telephone buttons can be helpful also in situations, when the spoken communication is disturbed by noise or by other conditions.
Another decision can be done, which relates to the possibility of the user to interrupt the system prompt. Such possibility is called “barge-in”. Interrupting of the other participant in the dialog belongs to the often used interaction patterns, which can significantly accelerate the interaction. VoiceXML platforms have to support barge-in function. It can be switched on/off by the attribute of the <prompt> element.
After all issues were decided, the dialog diagram could be scetched in form of a flow chart. Nodes of such flow chart represent the system questions and transitions represent possible reactions of the user. An example of the flow chart for pizza delivery dialogue service is shown in Fig. 30.

[image:]
[bookmark: _Ref418019815][bookmark: _Toc418186644]Fig. 30 Example of pizza delivery service flow chart[footnoteRef:1] [1: Source: http://www.ling.gu.se/~lager/teaching/dialogue_systems/labs/img/dialog_flow1.gif]

[bookmark: _Toc417996072][bookmark: _Toc418186461]Writing prompts and grammars
There can be formulated few recommendations for writing system prompts, which tend to the more reliable and more ergonomic voice services. An appropriate formulation of system prompts significantly influences the user answers and speech grammars that should match them.
The level of the prompt “openness” determines how restrictive will the system question (prompt) be. Open prompts are less restrictive and allow users to use more free language. The typical representative of the open prompt is
“How may I help you?“
prompt, which can be answered by any spoken language utterance. It is clear that to write an appropriate deterministic speech grammar for such input utterances will be a difficult work. To prepare statistical language model can be seen as an appropriate solution, but not together with the VoiceXML language, because it is designed predominantly to be used with deterministic grammars written according SRGS and SISR recommendations. Of course, mentioned recommendations offer also solution in form of garbages and fillers, but they support depends on voice platform (or SDS). Instead of described difficulties, VoiceXML enables to use open prompts in the mixed-initiative mode, but it still expects only filling of predefined set of value slots.
Closed prompts stays on the opposite side. They directly restrict user to choose from few choices. The typical closed prompt can look like:
“Please, choose one of: sport, movies or music.”
In almost all situations, we will construct prompts somewhere in the range from open to closed prompts.
Following recommendations should be considered while writing prompts:
· To formulate prompts with an appropriate length.
· Length of the prompts is an important property. Prompts should not be too long, because, the user’s attention can decrease. Too long prompts also prolong the dialogue, which can be uncomfortable for the user. On the opposite site, too short prompts cannot be enough explaining.
· To formulate polite prompts, to be pleasant for the user.
· To consider TTS system possibilities during prompts construction. Sometimes can happen that some combination of diphones (or some words) can be worse synthesized as other. Synthesized prompts should be listened before the dialog application will be presented to users, to ensure understandability and the sufficient level of quality.
· To construct prompts, which are enough helpful and leads user to provide information, which is expected by the system.
The initial design of the dialog including constructed prompts can be evaluated using Wizard-of-Oz method, which can be very helpful for constructing appropriate speech grammars for particular prompts. Wizard-of-Oz method is a research method in which test subjects interact with a computer system, thinking that system is autonomous, but it is not true. In this method, system is operated or partially operated by an unseen human being. Trained operator replaces in Wizard-of-Oz experiment the dialogue manager and he manages the interaction with the test subjects to obtain information about the user’s behavior and language, which user usually use. Obtained user’s answer can help the service designer to construct speech grammars that cover utterances usually spoken by users as an answer for considered questions (prompts).
Another often used approach for preparing speech grammars for desired dialog is a brain-storming method, when the designer tries to collect all possible answers on designed system prompts. Then, designer tries to uncover a logical structure of such answers and it transforms this logic into the speech grammars rules.
[bookmark: _GoBack]
image1.gif

